
CPSC 490 : Senior Thesis December 15, 2015

Iterative Algorithms for Lipschitz Learning on Graphs

Advisor: Dan Spielman Xiao Shi

Abstract. This paper considers the problem of computing the Lex-Minimizer,
where one is given a finite graph along with fixed values at some vertices and
needs to compute a value assignment to the rest of the vertices such that the
assignment lexicographically minimizes the infinity norm of the value differences
across edges (in other words, to compute a value assignment that is as “smooth”
as possible). This paper discusses the structural properties of the Lex-Minimizer,
presents a few iterative algorithms which are based on these properties, and
proves the convergence of these algorithms for computing the Lex-Minimizer.

Contents

1. Introduction 2
2. Properties of Lex-Minimizer 2
2.1. Max-Min Gradient Averaging Property 2
2.2. Linearity 3
3. Iterative Algorithms for Computing Lex-Minimizer 4
3.1. IterLex for Uniformly Weighted Graphs 4
3.2. IterLex for General Graphs 4
4. Related Work 5
4.1. Wide Usage of Lex-Minimizers and IterLex Algorithms 5
4.2. Alternative Formulations 5
4.3. Related Results 6
5. Convergence of IterLex (on Uniformly Weighted Graphs) 7
5.1. Continuity 8
5.2. Monotonicity 9
5.3. Proof of Convergence 10
6. Convergence of IterLex (on General Graphs) 11
6.1. Continuity 12
6.2. Monotonicity 14
7. Future Directions 15
7.1. Rate of Convergence 15
7.2. Bounding Errors 15
8. Acknowledgment 16
References 16

1

CPSC490 Senior Thesis Xiao Shi

1. Introduction

We consider the Lipschitz extension problem on finite undirected graphs. Con-
sider a weighted undirected graph G = (V,E, `) and values v0 : T 7→ R on a subset
T of its vertices. We only consider positive weights ` : E 7→ R+ and view the
weights as indications of lengths of edges–shorter lengths indicate greater similar-
ity.

Our goal is to assign values to every vertex x ∈ V −T so that the values assigned
(on all vertices) are as smooth as possible across edges. We will define smoothness
precisely in later sections.

Throughout this paper, let n = |V |. As the vertices in T has fixed values, we
call them terminal or boundary vertices. Another way of looking at the terminal
values is to view v0 ∈ Rn as a function v0 : V 7→ R ∪ {⊥}, where v0(x) =⊥ if and
only if x /∈ T . Given a vector v : V 7→ R. We write v|T = v0|T say that v extends
v0 if for every x ∈ T , v(x) = v0(x).

Inf-Minimizers. A minimal Lipschitz extension of v0 is a vector v : V 7→ R that
minimizes

(1) max
(x,y)∈E

(
`(x, y)

)−1 ∣∣v(x)− v(y)
∣∣

subject to v(x) = v0(x) for all x ∈ T .

As (1) is equivalent to the infinity norm of
(
`(x, y)

)−1 ∣∣v(x)− v(y)
∣∣ across edges,

we call a vector v that minimizes this objective an Inf-Minimizer.

Lex-Minmizer. Inf-minimizers are not unique, so among them, we seek vectors

that minimizes the second-largest absolute value of
(
`(x, y)

)−1 ∣∣v(x)− v(y)
∣∣ across

edges, and then the third-largest given that, and so on. This way we obtain an
absolutely minimal Lipschitz extension (AMLE) of v0. We call such a vector v∗

the Lex-Minizer, which we have proven to be unique [KRSS15].

In this paper, we discuss some structural properties of Lex-Minimizer in Sec-
tion 2; we then present a few iterative algorithms to calculate the Lex-Minimizer
in Section 3; finally, we prove the convergence of these algorithms in Sections 5
and 6.

2. Properties of Lex-Minimizer

It turns out that the lex-minimizer has very nice structural properties, especially
on uniformly weighted graphs.

2.1. Max-Min Gradient Averaging Property.

2

CPSC490 Senior Thesis Xiao Shi

Definition 2.1 (Gradient due to an assignment). Given a vector v : V 7→ R∪{⊥},
(x, y) ∈ E, where v(x) 6=⊥ and v(y) 6=⊥. We define the gradient on (x, y) due to
v to be

grad[v](x, y) =
v(x)− v(y)

`(x, y)
.

Note that grad[v](x, y) = −grad[v](y, x). We drop [v] when the context is clear.
We also define the gradient along a path P = 〈p1 → p2 → . . .→ pk〉, where

pi ∈ V and (pi, pi+1) ∈ E, as

grad[v](P) =
v(p1)− v(pk)∑k−1
i=1 `(pi, pi+1)

.

Note that grad[v]
(
〈p1 → p2 → . . .→ pk〉

)
= −grad[v]

(
〈pk → pk−1 → . . .→ p1〉

)
.

Definition 2.2 (Max-min gradient averaging property). The vector v : V 7→ R
which extends v0 satisfies max-min gradient averaging property if for every non-
terminal vertex x ∈ V − T ,

(2) max
(x,y)∈E

grad[v](y, x) = − min
(x,y)∈E

grad[v](y, x)

Theorem 2.3. Given (G,v0), the Lex-Minimizer v∗ which extends v0 satisfies
the max-min gradient averaging property. Moreover, it is the unique assignment
extending v0 that satisfies this property with respect to (G,v0).

Proof. See the proof of Theorem 3.10 in Appendix A.3 in [KRSS15]. �

Corollary 2.4 (For uniformly weighted graphs). Given a uniformly weighted graph
G(V,E, `) and v0, (i.e., `(e) = c for all e ∈ E, where c is a postive constant,) the
Lex-Minimizer v∗ which extends v0 has the following property: for all x ∈ G− T ,

(3) v∗(x) =
1

2

(
max

(x,y)∈E
v∗(y) + min

(x,z)∈E
v∗(z)

)
2.2. Linearity.

Theorem 2.5 (Linearity of Lex-Minimizers). Given a graph G and two sets of
terminal values v0 and v̂0, let v∗ be the Lex-Minimizer that extends v0 and v̂∗ be
the Lex-Minimizer that extends v̂0, if v0 and v̂0 satisfies

v̂0(x) = av0(x) + b,∀x ∈ T, a ∈ R, b ∈ R,

then for every vertex y ∈ V ,

v̂∗(y) = av∗(y) + b.

Proof. Construct v ∈ Rn such that for every vertex y ∈ V , v(y) = av∗(y) + b. v
obviously extends v0.

3

CPSC490 Senior Thesis Xiao Shi

For every non-terminal vertex x ∈ V − T ,

max
(x,y)∈E

grad[v](y, x)

= max
(x,y)∈E

v(y)− v(x)

`(y, x)

= max
(x,y)∈E

av∗(y) + b−
(
av∗(x) + b

)
`(y, x)

=a max
(x,y)∈E

v∗(y)− v∗(x)

`(y, x)

=a max
(x,y)∈E

grad[v∗](y, x)

Similarly, we can show that

min
(x,y)∈E

grad[v](y, x) = a min
(x,y)∈E

grad[v∗](y, x).

Since v∗ is a Lex-Minimizer, which must satisfy the max-min gradient av-
eraging property: max(x,y)∈E grad[v∗](y, x) = −min(x,y)∈E grad[v∗](y, x). Hence,
max(x,y)∈E grad[v](y, x) = −min(x,y)∈E grad[v](y, x), i.e., v also satisfies the max-
min gradient averaging property. By Theorem 2.3, it must be the Lex-Minimizer
that extends v0. By uniqueness of the Lex-Minimizer, v = v̂∗.

�

3. Iterative Algorithms for Computing Lex-Minimizer

Theorem 2.3 and Corollary 2.4 naturally give rise to a few iterative algorithms
for compute Lex-Minimizers.

3.1. IterLex for Uniformly Weighted Graphs. Initially assign a value (say 0)
for any vertex u /∈ T , then simply iteratively take the average for the max and
min neighbors until we get to an assignment with acceptable error (the termina-
tion criterion could be within absolute error ε, or a ε-approximation, etc.). More
formally, see Algorithm 1.

3.2. IterLex for General Graphs. Analogously for general graphs, we could
take the weighted average of the max and min neighbors. However, Theorem 2.3
permits two methods of picking the max and min neighbors. As specified below,
Version 1 selects the neighbors whose respective gradients to the current vertex are
the maximum and mininum; Version 2 selects the pair of neighbors whose gradient
between them are the maximum.

4

CPSC490 Senior Thesis Xiao Shi

Algorithm 1 IterLex for Uniformly Weighted Graphs

1: v1|T ← v0|T . shorthand for copying values for vertices in T
2: for all x ∈ V − T do
3: v1(x)← c
4: end for . initial assignment, c is a constant
5: t← 0
6: while termination criterion is not met do
7: vt+1|T ← v0|T
8: for all x ∈ V − T do
9: vt+1(x) = 1

2

(
max(x,y)∈E vt(y) + min(x,z)∈E vt(x)

)
10: end for
11: t← t+ 1
12: end while

Algorithm 2 IterLex for General Graphs (Version 1)

1: v1|T ← v0|T
2: for all x ∈ V − T do
3: v1(x)← c
4: end for . initial assignment, c is a constant
5: t← 0
6: while termination criterion is not met do
7: vt+1|T ← v0|T
8: for all x ∈ V − T do
9: y ← arg max(x,y)∈E grad[vt](y, x)

10: z ← arg min(x,z)∈E grad[vt](z, x)

11: vt+1(x)← (`(y,x)vt(z)+`(z,x)vt(y))/(`(y,x)+`(z,x))
12: end for
13: t← t+ 1
14: end while

4. Related Work

4.1. Wide Usage of Lex-Minimizers and IterLex Algorithms. As Lex-
Minimizers provide the “smoothest” extension, they are used in various areas such
as image processing and machine learning ([GEL11], [ADE14], [EDLL14]). Some
examples include image inpainting, image scaling, and cluster recognition.

4.2. Alternative Formulations. Lex-Minimizers have a lot of alternative for-
mulations and related problems. It is the limit of the solutions to p-Laplacian

5

CPSC490 Senior Thesis Xiao Shi

Algorithm 3 IterLex for General Graphs (Version 2)

1: v1|T ← v0|T
2: for all x ∈ V − T do
3: v1(x)← c
4: end for . initial assignment, c is a constant
5: t← 0
6: while termination criterion is not met do
7: vt+1|T ← v0|T
8: for all x ∈ V − T do
9: (y, z)← arg max(x,y)∈E,(x,z)∈E grad[vt](y, z)

10: vt+1(x)← (`(y,x)vt(z)+`(z,x)vt(y))/(`(y,x)+`(z,x))
11: end for
12: t← t+ 1
13: end while

minimization problems as p→∞, namely, the vectors that solve

(4) min
v:V 7→R,v|T=v0|T

∑
(x,y)∈E

(
`(x, y)

)−p ∣∣v(x)− v(y)
∣∣p .

Given that all weights are positive, (4)≥ 0. Zero is actually achievable by so-
lutions to p-harmonic functions. (See [And09] for details.) It follows that the
Lex-Minimizer is also the limit of the solutions to p-harmonic functions.

The continuous counterpart of Lex-Minimization on finite graphs is infinity-
Laplacian (∆∞) equations. [PSSW08] studies the ∞-Laplacians and relate them
to tug-of-war games. [Obe05] discretizes ∆∞ as AMLE (i.e., Lex-Minimizers) and
proves that the solutions of AMLE converges to the solution of∞-Laplacians as the
discretization becomes more and more granular. Lex-Minimizers are also closely re-
lated to the Dirichlet problems, simple stochastic games (also affectionately known
as Anne Condon’s games in the distributed systems community)... the list goes
on.

4.3. Related Results. Before the algorithm that [KRSS15] proposed, the com-
munity has been using the IterLex algorithms, often without careful analysis. In
fact, their convergence was an open question. The main contributions of this paper
is a proof of convergence of IterLex Algorithms 1 and 3.

6

CPSC490 Senior Thesis Xiao Shi

Andersson in his Master Thesis [And09] formulated Lex-Minimizer as the limit
of solutions to p-harmonic functions. He presented an iterative algorithm for p-
harmonic functions on uniformly weighted graphs, and proved its convergence.
Unfortunately his proof breaks down when p =∞.

[LLP+99] formulated the Lex-Minimization problem as calculating Richman
costs. This is a special case of the Lipschitz extension problem, as it considers di-
rected (but unweighted) graphs and has only two terminals. Lazarus et al. proved
convergence of the iterative algorithm and showed an exponential rate of conver-
gence.

5. Convergence of IterLex (on Uniformly Weighted Graphs)

In order to show the convergence of Algorithm 1, we formulate the original
problem and the algorithm slightly differently.

Given undirected graph G(V,E, `) that is uniformly weighted, let H(V) be the
Hilbert space of all real valued functions (assignments) on the vertices of the graph,
i.e., each function v ∈ H(V) : V 7→ R assigns a real value v(x) to each vertex
x ∈ V .

The Set of Possible Assignments. Consider the set of potential assignments

K =
{
v ∈ H(V) : v|T = v0|T ;∀x ∈ V,m ≤ v(x) ≤M

}
,

where m = minx∈T v0(x) and M = maxx∈T v0(x).
K does not include all possible assignment that extends v0, but every assignment

in K extends v0. Furthermore, it follows from Theorem 2.3 and the iteration
procedure in Algorithm 1 that for any vertex x ∈ V , the value of x is always
contained in [m,M]. Therefore, ∀t ≥ 0,vt ∈ K.

If we identify H(V) to be Rn, we notice that K ⊂ H(V) is a convex and compact
subset of Rn.

Update Functions. We then consider the iterations in Algorithm 1 to be
update functions on assignments vt.

The global update function F : K 7→ K is thus

F (v)(x) =

{
1
2

(
max(x,y)∈E v(y) + min(x,z)∈E v(z)

)
if x /∈ T ;

v(x) if x ∈ T .

Composition of Local Update Functions. Perceivably, we may choose not to up-
date vertices altogether based on their values from the previous iteration. Instead,
we can update the vertices one by one in each iteration.

Consider Fi : K 7→ K, the local update function on vertex i, which takes the
average of i’s max and min neighbors and leaves values at other vertices intact:

Fi(v)(x) =

{
1
2

(
max(x,y)∈E v(y) + min(x,z)∈E v(z)

)
if x = i and x /∈ T ;

v(x) otherwise.

7

CPSC490 Senior Thesis Xiao Shi

Given a permutation of the vertices π ∈ Sn, where Sn is the symmetric group of
the n vertices. Then the composition of n local update functions can be a candidate
for our update function:

F π(v) = Fπ(n) ◦ Fπ(n−1) ◦ . . . ◦ Fπ(1)(v).

Note that the global update function is not the same as the composition of local
update functions, as the max-min neighbors might change as we apply the local
updates one by one.

Lazy Update Function. Analogous to the lazy version of random walk, we can
define a lazy version of the global update function Fα : K 7→ K with parameter
0 ≤ α < 1:

Fα(v)(x) =

{
αv(x) + (1−α)

2

(
max(x,y)∈E v(y) + min(x,z)∈E v(z)

)
if x /∈ T ;

v(x) if x ∈ T .

Note that when α = 0, Fα is exactly the same as F .
Lex-Minimizer as Fixed Point. Any fixed point v† of the global update

function F (i.e., v† ∈ K that satisfies v† = F (v†)) corresponds exactly to the
Lex-Minimizer as it satisfies the property in Corollary 2.4. From the existence
and uniqueness of the Lex-Minimizer, the existence and uniqueness of fixed point
follows. Since v† = v∗, we refer to the fixed point as v∗ as well.

We can also show the existence of the fixed point using Brouwer’s Fixed Point
Theorem: every continuous function from a convex compact subset S of a Eu-
clidean space to S itself has a fixed point. The map v 7→ F (v) is continuous (See
Section 5.1) and is from the convex compact subset K ⊂ Rn to itself, hence F
has a fixed point. However, Brouwer’s Fixed Point Theorem does not provide a
construction process nor any indication of convergence using fixed point iteration.

5.1. Continuity. We now prove two important properties of the global update
function–continuity and monotonicity–in order to show convergence of Algorithm 1.

Lemma 5.1 (Continuity of the global update function). The global update function
F is continuous.

Proof. Suppose we have v, v̂ ∈ K, such that ‖v − v̂‖∞ ≤ ε, i.e., for all x ∈ V ,∣∣v(x)− v̂(x)
∣∣ ≤ ε.

Since v, v̂ ∈ K, v|T = v0|T = v̂|T .
For each vertex x ∈ V − T , even though x may have different max (resp. min)

neighbors in assignments v and v̂, the values of its max (resp. min) neighbors
cannot be more than ε apart. Hence

∣∣F (v)(x)− F (v̂)(x)
∣∣ ≤ ε.

Thus the global update function is actually uniformly continuous:∥∥F (v)− F (v̂)
∥∥
∞ = max

x∈V

∣∣F (v)(x)− F (v̂)(x)
∣∣ ≤ ε.

�

8

CPSC490 Senior Thesis Xiao Shi

Corollary 5.2 (Continuity of variants of update functions). The local update func-
tion Fi, the composition of local update functions F π, and the lazy global update
function are all continuous.

Proof. This follows from the same argument as in Lemma 5.1. Again assumee we
have v, v̂ ∈ K, such that ‖v − v̂‖∞ ≤ ε.

For the local update function, apply the argument in Lemma 5.1 to the vertex
i. For the rest of the vertices,

∣∣F (v)(x)− F (v̂)(x)
∣∣ ≤ ε follows directly from

assumption.
Since F π is a composition of continuous functions, it is itself continous.
For the lazy version, we obtain that for x ∈ V − T ,∣∣F (v)(x)− F (v̂)(x)

∣∣ ≤ (1− α)ε.

Since α ∈ [0, 1),∥∥F (v)− F (v̂)
∥∥
∞ = max

x∈V

∣∣F (v)(x)− F (v̂)(x)
∣∣ ≤ ε.

�

5.2. Monotonicity.

Lemma 5.3 (Monotonicity of the global update function). If v, v̂ ∈ K satisfy
v(x) ≤ v̂(x) for all x ∈ V , then F (v)(x) ≤ F (v̂)(x) for all x ∈ V .

Proof. First note that terminal nodes always satisfy this property: if x ∈ T , by
definition, v(x) = v̂(x) = v0(x) and F (v)(x) = F (v̂)(x) = v0(x).

Now we consider any non-terminal vertex x ∈ V − T .
Let xvmax be x’s max-neighbor in v, i.e.,

xvmax = arg max
(x,y)∈E

v(y).

We then have

max
(x,y)∈E

v(y) = v(xvmax) ≤ v̂(xvmax) ≤ max
(x,y)∈E

v̂(y).

Similarly, let xv̂min be x’s min-neighbor in v̂, i.e.,

xv̂min = arg min
(x,z)∈E

v̂(z).

We then have

min
(x,z)∈E

v(z) ≤ v(xv̂min) ≤ v̂(xv̂min) = min
(x,z)∈E

v̂(z).

Therefore,

F (v)(x) =
1

2

(
max

(x,y)∈E
v(y) + min

(x,z)∈E
v(z)

)
≤ 1

2

(
max

(x,y)∈E
v̂(y) + min

(x,z)∈E
v̂(z)

)
= F (v̂)(x).

�

9

CPSC490 Senior Thesis Xiao Shi

It follows from the same line of reasoning that the other variants of update
functions are also monotonic.

Corollary 5.4 (Monotonicity of variants of update functions). The local update
function Fi, the composition of local update functions F π, and the lazy global update
function are all monotonic.

Note that we do not have strict monotonicity, i.e., if f and g are two elements
in K such that f(u) < g(u) for all u ∈ V − T , we do not have F (f)(u) < F (g)(u).
The simplest counter example would be a path graph with 3 vertices, the two
vertices on the end are terminals. Applying the update function will always give
you the same value for the single non-terminal node, which is the average of the
two terminals values. Fortunately, we do not need strict monotonicity to argue
that Algorithm 1 converges to the Lex-Minimizer.

5.3. Proof of Convergence. Consider the sequence of assignments {vt} we ob-
tain by running Algorithm 1.

Initially, we start with v1. We set the terminal values accordingly: v1|T ← v0|T .
We set all the non-terminal vertices to be c ← m = minx∈T v0(x), where the
constant c is defined in Algorithm 1 and m is the minimum among all the terminal
values. We then keep applying the global update function:

v2 = F (v1)

v3 = F
(
F (v1)

)
= F (v2)

. . .

vt = F
(
vt−1

)
. . .

Definition 5.5 (Partial order on the set K). Given v, v̂ ∈ K, we write v ≤ v̂ if
and only if ∀x ∈ V,v(x) ≤ v̂(x).

Remark 5.6. Given this partial order, note that v1 is the “minimal” assignment
in the set K, i.e., ∀v ∈ K, we have v1 ≤ v.

Lemma 5.7 (Boundedness of {vt}). ∀t ≥ 1, vt ≤ v∗, where v∗ = F (v∗) is the
Lex-Minimizer.

Proof. We show this by induction on t. The base case v1 ≤ v∗ follows from
Remark 5.6. Now assume vt−1 ≤ v∗. By Lemma 5.3, F (vt−1) ≤ F (v∗). Hence,

vt = F (vt−1) ≤ F (v∗) = v∗.

�

Lemma 5.8 (Monotonicity of {vt}). ∀t > 1, vt−1 ≤ vt.

10

CPSC490 Senior Thesis Xiao Shi

Proof. We again induct on t. The base case t = 2, v1 ≤ v2 follows from Remark 5.6.
Now assume for t > 2, vt−2 ≤ vt−1. By Lemma 5.3, F (vt−2) ≤ F (vt−1). Hence,

vt−1 = F (vt−2) ≤ F (vt−1) = vt.

�

Theorem 5.9 (Convergence of IterLex). limt→∞ vt → v∗.

Proof. Lemma 5.7 and Lemma 5.8 state that for any vertex x ∈ V , the sequence{
vt(x)

}
is monotonically non-decreasing and upper-bounded by v∗(x). Hence,

by the Monotone Convergence Theorem (of real numbers), the sequence
{
vt(x)

}
converges to supt≥1

{
vt(x)

}
. Therefore the sequence {vt} pointwise converges to

a limit ṽ, where ṽ(x) = supt≥1
{
vt(x)

}
for all x ∈ V .

Now we show that the limit ṽ = v∗, the Lex-Minimizer.
Since F (·) is continuous on K and K ⊂ Rn is Hausdorff, we can interchange

limit and function application. Hence,

F (ṽ) = F (lim
t→∞

vt) = lim
t→∞

F (vt) = lim
t→∞

vt+1 = ṽ.

ṽ is a fixed point of F , but since we know the unique fixed point is the Lex-
Minimizer, we must have ṽ = v∗. �

This tells us that Algorithm 1 pointwise converges to the Lex-Minimizer v∗ in
the limit.

6. Convergence of IterLex (on General Graphs)

The convergence of Algorithm 3 follows from a similar argument. However, the
argument for the continuity and monotonicity is more complicated.

Now we consider an weighted undirected graph G(V,E, `), where ` : E 7→ R+,
and an initial set of terminal values v0 : V 7→ Rn ∪ {⊥}. We still let the set of
possible assignments be K, and the Lex-Minimizer be v∗.

Definition 6.1 (Weighted average of two neighbors). For any non-terminal vertex
x ∈ V − T and two of its neighbors y and z, i.e., (x, y) ∈ E, (x, z) ∈ E, we define
the weighted average of the two neighbors in assignment v as

wv(y, z) ,
`(x, y)v(z) + `(x, z)v(y)

`(x, y) + `(x, z)
.

We drop the subscript when the context is clear.

Remark 6.2. ∀v ∈ K, x ∈ V, (x, y) ∈ E, (x, z) ∈ E, wv(z, y) = wv(y, z).

Remark 6.3. Consider any assignment v ∈ K, any vertex x ∈ V −T and its three
neighbors u, y, z. If grad[v]

(
〈y → x→ u〉

)
≤ grad[v]

(
〈y → x→ z〉

)
, or equiva-

lently grad[v]
(
〈u→ x→ y〉

)
≥ grad[v]

(
〈z → x→ y〉

)
, then w(y, u) ≥ w(y, z).

11

CPSC490 Senior Thesis Xiao Shi

Definition 6.4 (Weighted global update function).

F̃ (v)(x) = wv(y, z), where (y, z) = arg max
(x,y)∈E,(x,z)∈E

grad[v]
(
〈y → x→ z〉

)
.

6.1. Continuity.

Lemma 6.5 (Continuity of weighted global update function). The weighted global
update function F̃ is continuous.

Proof. Suppose we have v, v̂ ∈ K, such that ‖v − v̂‖∞ ≤ ε, i.e., for all x ∈ V ,∣∣v(x)− v̂(x)
∣∣ ≤ ε. Consider any non-terminal vertex x ∈ V − T . We first observe

that if vertices y and z are the neighbors of x, we have

(5)
∣∣wv(y, z)− wv̂(y, z)

∣∣ ≤ `(x, y)
∣∣v(z)− v̂(z)

∣∣+ `(x, z)
∣∣v(y)− v̂(y)

∣∣
`(x, y) + `(x, z)

≤ ε.

In this proof, we use grad[·](y, z) solely in the context of (and therefore depends
on) x, i.e., for any u ∈ K, we overload the notation

grad[u](y, z) , grad[u](〈y → x→ z〉) =
u(y)− u(z)

`(x, y) + `(x, z)
.

We then further observe that∣∣grad[v](y, z)− grad[v̂](y, z)
∣∣ ≤ ∣∣v(z)− v̂(z)

∣∣+
∣∣v(y)− v̂(y)

∣∣
`(x, y) + `(x, z)

≤ 2ε

`(x, y) + `(x, z)

. We write the righthand side as ∆y,z for short.
Let vertices α and β be the neighbors of x that maximize grad[v](β, α); let

vertices γ and δ be the neighbors of x that maximize grad[v̂](δ, γ).
By our previous observation,

(6)
∣∣grad[v](δ, γ)− grad[v̂](δ, γ)

∣∣ ≤ 2ε

`(x, δ) + `(x, γ)
= ∆δ,γ,

(7)
∣∣grad[v](β, α)− grad[v̂](β, α)

∣∣ ≤ 2ε

`(x, β) + `(x, α)
= ∆β,α.

Therefore,

grad[v̂](δ, γ)

≤grad[v](δ, γ) + ∆δ,γ

(
By (6)

)
≤grad[v](β, α) + ∆δ,γ

(
Since (β, α) maximize grad[v](·, ·)

)
≤grad[v̂](β, α) + ∆β,α + ∆δ,γ

(
By (7)

)
Hence

(8) grad[v̂](β, α) ≤ grad[v̂](δ, γ) ≤ grad[v̂](β, α) + ∆β,α + ∆δ,γ.

12

CPSC490 Senior Thesis Xiao Shi

Now we want to relate their weighted averages. Recall that

wv̂(γ, δ) = v̂(γ) + grad[v̂](δ, γ) · `(γ, x) = v̂(δ)− grad[v̂](δ, γ) · `(δ, x).

Since grad[v̂](δ, γ) ≥ grad[v̂](β, γ), we have

v̂(β) =v̂(γ) + grad[v̂](β, γ) ·
(
`(β, x) + `(γ, x)

)
≤v̂(γ) + grad[v̂](δ, γ) ·

(
`(β, x) + `(γ, x)

)
=wv̂(γ, δ) + grad[v̂](δ, γ) · `(β, x).

(9)

Since grad[v̂](δ, γ) ≥ grad[v̂](δ, α), we have

v̂(α) =v̂(δ)− grad[v̂](δ, α) ·
(
`(α, x) + `(δ, x)

)
≥v̂(δ)− grad[v̂](δ, γ) ·

(
`(α, x) + `(δ, x)

)
=wv̂(γ, δ)− grad[v̂](δ, γ) · `(α, x).

(10)

Therefore,

wv̂(α, β) =v̂(β)− grad[v̂](β, α) · `(β, x)

≤wv̂(γ, δ) + grad[v̂](δ, γ) · `(β, x)− grad[v̂](β, α) · `(β, x)
(
By (9)

)
≤wv̂(γ, δ) + (∆β,α + ∆δ,γ) · `(β, x).

(
By (8)

)
Similarly, we obtain a lower bound,

wv̂(α, β) =v̂(α) + grad[v̂](β, α) · `(α, x)

≥wv̂(γ, δ)− grad[v̂](δ, γ) · `(α, x) + grad[v̂](β, α) · `(α, x)
(
By (10)

)
≥wv̂(γ, δ)− (∆β,α + ∆δ,γ) · `(α, x).

(
By (8)

)
Let `min = mine∈E `(e) and `max = maxe∈E `(e). As the graph G is fixed, `min

and `max can be considered as constants. Then we have∣∣wv̂(γ, δ)− wv̂(α, β)
∣∣

≤(∆β,α + ∆δ,γ) ·max
{
`(α, x), `(β, x)

}
=

(
2ε

`(x, β) + `(x, α)
+

2ε

`(x, δ) + `(x, γ)

)
·max

{
`(α, x), `(β, x)

}
≤
(

2ε

`min + `min

+
2ε

`min + `min

)
· `max

≤2`max

`min

· ε.

(11)

13

CPSC490 Senior Thesis Xiao Shi

It follows that

∣∣∣F̃ (v)(x)− F̃ (v̂)(x)
∣∣∣

≤
∣∣wv(β, α)− wv̂(δ, γ)

∣∣
≤
∣∣wv(β, α)− wv̂(β, α)

∣∣+
∣∣wv̂(β, α)− wv̂(δ, γ)

∣∣ (triangular inequality)

≤ε+
2`max

`min

· ε
(
By (5) and (11)

)
=

(
1 +

2`max

`min

)
· ε.

Therefore,

∥∥∥F̃ (v)− F̃ (v̂)
∥∥∥
∞

= max
x∈V

∣∣∣F̃ (v)(x)− F̃ (v̂)(x)
∣∣∣ ≤ (1 +

2`max

`min

)
· ε.

F̃ is continuous.
�

6.2. Monotonicity.

Lemma 6.6 (Monotonicity of weighted global update function). If v, v̂ ∈ K satisfy
v(x) ≥ v̂(x) for all x ∈ V , then F̃ (v)(x) ≥ F̃ (v̂)(x) for all x ∈ V .

Proof. Consider any non-terminal vertex x ∈ V − T .
We again use overload the notation grad[·](·, ·), i.e., for any u ∈ K and x’s

neighbors y and z,

grad[u](y, z) , grad[u](〈y → x→ z〉) =
u(y)− u(z)

`(x, y) + `(x, z)
.

Let vertices α and β be the neighbors of x that maximize grad[v](β, α); let ver-
tices γ and δ be the neighbors of x that maximize grad[v̂](δ, γ). Therefore, v(β) ≥
v(α), v̂(δ) ≥ v̂(γ), grad[v](δ, α) ≤ grad[v](β, α), and grad[v̂](δ, α) ≤ grad[v̂](δ, γ).

14

CPSC490 Senior Thesis Xiao Shi

F̃ (v)(x)

=wv(β, α)

≥wv(δ, α)
(
by Remark 6.3 given grad[v](δ, α) ≤ grad[v](β, α)

)
=
`(δ, x)v(α) + `(α, x)v(δ)

`(δ, x) + `(α, x)

≥`(δ, x)v̂(α) + `(α, x)v̂(δ)

`(δ, x) + `(α, x)

(
v(α) ≥ v̂(α),v(δ) ≥ v̂(δ), `(·, ·) > 0

)
=wv̂(δ, α)

≥wv̂(δ, γ)
(
by Remark 6.3 given grad[v̂](δ, α) ≤ grad[v̂](δ, γ)

)
=F̃ (v̂)(x)

�

7. Future Directions

7.1. Rate of Convergence.

7.1.1. Path Graphs. Using spectral methods, without much effort, one can show
that if G is an uniformly weighted path graph Pn, then

‖vt − v∗‖ ≤ (1− λ)t ‖v1 − v∗‖ ≈ e−λt ‖v1 − v∗‖ ,
where λ = 1− cos(π/n−1) is the spectral gap of the adjacency matrix 1/2APn−2 .

Therefore, to get ‖vt − v∗‖ ≤ ε ‖v0 − v∗‖, simply require t ≥ 1
λ

log(1/ε).

7.1.2. General Graphs. Although the IterLex algorithms might not be as fast as
the ones presented in [KRSS15], their programming complexity is much lower. It
would be very nice to obtain a theoretical bound for the rate of convergence in the
general case.

7.2. Bounding Errors. One way to exploit the monotonicity of the update func-
tions is using it to estimate or bound the error ‖vt − v∗‖.

It follows from the above sections that given an assignment v ∈ K and any
vertex x ∈ V , we have

∣∣F (v)(x)− v∗(x)
∣∣ ≥ ∣∣F (v)(x)− v(x)

∣∣, a lower bound on
the error. An upper bound would be very useful.

Another possible way to exploit monotonicity is approaching v∗ from both above
and below. Specifically, when running Algorithm 1, concurrently run it on another
set of assignments v′t, where v′1 is obtained by setting c ← M = maxx∈T v0(x).
It’s easy to show that {v′t} is monotonically non-increasing and converges to v∗.
Therefore we have vt ≤ v∗ ≤ v′t for every t. The maximum error is then bounded
by ‖v′t − vt‖∞.

15

CPSC490 Senior Thesis Xiao Shi

8. Acknowledgment

I am indebted to my advisor Prof. Dan Spielman for his insights, patience,
and support. Without him, this work would not have been possible. I would also
like to thank Sushant Sachdeva, Rasmus Kyng, and Xinwei (David) Yao for their
discussions and encouragement.

References

[ADE14] Sadia Alkama, Xavier Desquesnes, and Abderrahim Elmoataz. Infinity
laplacian on graphs with gradient terms for image and data clustering.
Pattern Recognition Letters, 41:65 – 72, 2014. Supervised and Unsuper-
vised Classification Techniques and their Applications.

[And09] Karl T. Andersson. An iterative solution method for p-harmonic func-
tions on finite graphs with an implementation. 2009. (Master Thesis).

[EDLL14] Abderrahim Elmoataz, Xavier Desquesnes, Zakaria Lakhdari, and
Olivier Lzoray. Nonlocal infinity laplacian equation on graphs with
applications in image processing and machine learning. Mathematics
and Computers in Simulation, 102:153 – 163, 2014. 4th International
Conference on Approximation Methods and Numerical Modeling in En-
vironment and Natural Resources - {PART} {II}.

[GEL11] Mahmoud Ghoniem, Abderrahim Elmoataz, and Olivier Lezoray. Dis-
crete infinity harmonic functions: Towards a unified interpolation
framework on graphs. In Image Processing (ICIP), 2011 18th IEEE
International Conference on, pages 1361–1364, Sept 2011.

[KRSS15] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A. Spielman.
Algorithms for lipschitz learning on graphs. CoRR, abs/1505.00290,
2015.

[LLP+99] Andrew J. Lazarus, Daniel E. Loeb, James G. Propp, Walter R.
Stromquist, and Daniel H. Ullman. Combinatorial games under auc-
tion play. Games and Economic Behavior, 27(2):229 – 264, 1999.

[Obe05] Adam M. Oberman. A convergent difference scheme for the infinity
laplacian: construction of absolutely minimizing lipschitz extensions.
Math. Comput., 74(251):1217–1230, 2005.

[PSSW08] Yuval Peres, Oded Schramm, Scott Sheffield, and David B. Wilson.
Tug-of-war and the infinity laplacian. 2008.

16

	1. Introduction
	2. Properties of Lex-Minimizer
	2.1. Max-Min Gradient Averaging Property
	2.2. Linearity

	3. Iterative Algorithms for Computing Lex-Minimizer
	3.1. IterLex for Uniformly Weighted Graphs
	3.2. IterLex for General Graphs

	4. Related Work
	4.1. Wide Usage of Lex-Minimizers and IterLex Algorithms
	4.2. Alternative Formulations
	4.3. Related Results

	5. Convergence of IterLex (on Uniformly Weighted Graphs)
	5.1. Continuity
	5.2. Monotonicity
	5.3. Proof of Convergence

	6. Convergence of IterLex (on General Graphs)
	6.1. Continuity
	6.2. Monotonicity

	7. Future Directions
	7.1. Rate of Convergence
	7.2. Bounding Errors

	8. Acknowledgment
	References

