
The Chubby Lock Service for Loosely-Coupled
Distributed Systems

...and a little bit about Paxos too

Presenter: Xiao Shi

Yale University

xiao.shi@yale.edu

Oct 2015

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 1 / 26



Distributed Consensus and the Paxos Protocol
...and a little bit about Chubby Lock Service too

Presenter: Xiao Shi

Yale University

xiao.shi@yale.edu

Oct 2015

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 2 / 26



Overview

1 Consensus Problem

2 Paxos Algorithm

3 Chubby

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 3 / 26



Consensus Problem

Definition 1

Assume a collection of processes under a message passing framework that
can propose initial values. Up to f processes may fail. Devise an algorithm
or a protocol which lets each process decide on a final value and
guarantees the following properties:

Agreement: all non-faulty processes decide the same value;

Validity: if all processes proposed the same initial value, that is the
value eventually decided;

Termination: all non-faulty processes eventually decide;

Non-triviality: there exists executions A and B that produce
different outputs.a

aPrevents trivial protocols that always returns 0 for example.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 4 / 26



Variants of the Consensus Problem

Failure modes

Crash failures (stopping failures): never restart

Crash failures, but processes may restart

Byzantine failures: all kinds of mischief...

... Byzantine adversary

Frameworks

Message passing

Synchronous (blocking): divided nicely into rounds
Asynchronous (non-blocking): messages may be delayed, lost, out of
order, duplicated; but may not be corrupt

Distributed Shared memorya

...

anever really worked well...

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 5 / 26



Proven Bounds and Results

Theorem 2 (Lower bound on the number of rounds)

In synchronous message passing frameworks, it requires at least f + 1
rounds if f processes can fail (either crash failure or Byzantine failure).

Theorem 3 (Minimum number of processes for Byzantine agreement)

The total number of processes n must be at least 3f + 1 to tolerate a
system with f Byzantine processes.

Theorem 4

Asynchronous agreement cannot be achieved with even one crash failure
(without augmenting the model with clocks or randomization etc.).

Theorem 4 is known as the famous FLP (Impossibility) Result1.
1Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Distributed Consensus with One Faulty

Process”. In: J. ACM 32.2 (Apr. 1985), pp. 374–382. issn: 0004-5411. doi: 10.1145/3149.214121. url:
http://doi.acm.org/10.1145/3149.214121.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 6 / 26

http://dx.doi.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121


Paxos5: A bit of History

Previous work on consensus: after the FLP result in 1985, Dwork et
al.2 showed in 1988 that consensus is achievable under the
assumption of partial synchrony3.

Viewtimestamped Replication4 (1998) was a related paper addressing
replication of DB transactions and maintenance of consistent views.
The view change protocol bears a striking resemblance to Paxos.
However, these two papers were developed completely independently.

Lamport wrote a tech report describing Paxos in 1990, which did not
get published until 1998.

2Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the presence of partial synchrony”. In: Journal of the
ACM (JACM) 35.2 (1988), pp. 288–323.

3Partial synchrony:
◦ Of communication: let ∆ be the upper bound message delivery time, assume processors clock rates are the same: either (1)
∆ exists but unknown; or (2) ∆ holds from some unknown time onward.
◦ Of processes: let Φ be the upper bound on relative processor speed: either (3) Φ exists but unknown; or (4) Φ holds from
some unknown time onward.

4Brian M Oki and Barbara H Liskov. “Viewstamped replication: A new primary copy method to support highly-available
distributed systems”. In: Proceedings of the seventh annual ACM Symposium on Principles of distributed computing. ACM.
1988, pp. 8–17.

5Leslie Lamport. “The Part-time Parliament”. In: ACM Trans. Comput. Syst. 16.2 (May 1998), pp. 133–169. issn:
0734-2071. doi: 10.1145/279227.279229. url: http://doi.acm.org/10.1145/279227.279229.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 7 / 26

http://dx.doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229


Paxos: Model and Assumptions

Processes

crash failures only; no Byzantine failures
(the processes with durable storage) may restart/re-join

Network

asynchronous message passing framework
each pair of processes can ping/message each other

Result: all non-faulty processes decide on one of the proposed values.

Paxos has grown to a large family of protocols, and is understood to
be one of the most efficient practical algorithms for distributed
consensus.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 8 / 26



Paxos: Development and Future

Single decree vs. multi decree (multi-Paxos)

Deployments and usage:

Google: Chubby, Spanner
Microsoft: Autopilot (data center management)
Amazon: AWS
Apache Zookeeper, VMWare, ...

Alternatives:

Phase King algorithm6 (synchronous message passing with Byzantine
tolerance)
Chandra-Toueg consensus algorithm7

uses eventually strong failure detectors
structurally similar to Paxos

Raft8

6Piotr Berman and Juan A Garay. “Cloture Votes: n/4-resilient Distributed Consensus int+ 1 rounds”. In: Mathematical
Systems Theory 26.1 (1993), pp. 3–19.

7Tushar Deepak Chandra and Sam Toueg. “Unreliable Failure Detectors for Reliable Distributed Systems”. In: J. ACM 43.2
(Mar. 1996), pp. 225–267. issn: 0004-5411. doi: 10.1145/226643.226647. url:
http://doi.acm.org/10.1145/226643.226647.

8Diego Ongaro and John Ousterhout. “In search of an understandable consensus algorithm”. In: Proc. USENIX Annual
Technical Conference. 2014, pp. 305–320.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 9 / 26

http://dx.doi.org/10.1145/226643.226647
http://doi.acm.org/10.1145/226643.226647


Paxos Protocol

Processes are divided into three categories: proposers, accepters,
and learners. In practice, a process can take on all three roles.

High-level description:

Proposers attempt to ratify their proposed value by collecting
acceptances from a majority of the accepters;
Learners “observe” whether any proposal has gained majority by
asking accepters for their accepted values, and output the eventual
decided value.

Accepters accept values locally, i.e., the value that an accepter
accepts may not be the value decided by the entire system, thus
separating “individual choice” from “group decision.”

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 10 / 26



Paxos Protocol: cont’d (1)

Requirement P1

An acceptor must accept the first proposal that it receives.

In the absence of failure or message loss, we want a value to be
chosen even if only one value is proposed by a single proposer.

Possible “deadlock” scenarios:

multiple proposals, none gained majority;
one proposal won against another by one vote, then one process
crashed;

Therefore, in order to make progress, an accepter must be able to
accept more than one proposal.

=⇒ Impose total order on proposals using proposal numbers (tuples
of process id or IP address AND timestamp).

Each proposal (n, v) then consists of a proposal number n and a
proposed value v .

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 11 / 26



Paxos Protocol: cont’d (2)

Paxos Phase 1
1 The proposer sends a message prepare(n) to all accepters, where n is

the proposal number.

2 Each accepter compares n to the highest-numbered proposal for
which it has responded to a prepare message. If n is greater, the
accepter responds with ack(n, v , nv ), where v is the
highest-numbered proposal it has accepted and nv is the number of
that proposal (or ack(n, null , null) if the accepter has not accepted
any prior proposals).a

aThink of the ack messages as a promise never to accept any proposal numbered less than n.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 12 / 26



Paxos Protocol: cont’d (3)

Paxos Phase 2
3 The proposer waits (possibly forever) to receive ack from a majority

of accepters. Among all the ack’s with a value, the proposer picks
the value vh with the highest proposal number. If none contained a
value, the proposer picks its own proposed value. It then sends
accept(n, vh)a to all accepters.

4 Upon receiving accept(n, v), an accepter accepts v unless it has
already received prepare(n′) for some n′ > n.

aThink of this as imperative–”Please accept!”–instead of acquiesce. Although, the accepters will still need to
decide whether to accept.

Whenever an accepter accepts a value, it sends a message accepted(n, v)
to all the learners. As soon as any learner sees that a proposal has been
accepted by a majority of accepters, it outputs that value as the final
decision of the system.
Much of the above can be optimized, e.g., by sending nack messages.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 13 / 26



Paxos Protocol: cont’d (4) Safety Properties

Definition 5

A value is chosen if a single proposal with that value has been accepted
by a majority of accepters. We also say that proposal has been chosen.

Can multiple proposals be chosen? Yes. Can they have different values?
No.

Invariant P2b

If a proposal (m, v) is chosen, then every higher-numbered proposal issued
by any proposer has value v .

Invariant P2b implies that the Paxos protocol the first chosen value will be
the decision value of the entire system and that no two distinct values are
both chosen, which gives agreement.
Validity follows from that no value is chosen unless it is previously
proposed.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 14 / 26



Paxos Protocol: cont’d (5) Proof of Invariant P2b

Invariant P2b

If a proposal (m, v) is chosen, then every higher-numbered proposal issued
by any proposer has value v .

Proof

This follows by induction on proposal numbers:

Assume that proposal n is chosen, where n > m. Induction
hypothesis: ∀m ≤ i < n, the issueda proposal i has value v .

Hence, there is a majority of accepters (call this set S) such that each
accepter in S have accepted at least one proposal numbered
[m, n − 1] with value v .

For proposal n to be chosen, there must be some set C consisting of
a majority of accepters such that each accepter in C sent back an ack
message. Since S and C has at least one process in common
(because of overlapping majority), proposal n will have value v .

aBy the time n is chosen, proposal i may not have decided on a value yet.Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 15 / 26



Paxos Protocol: cont’d (6) Liveness Properties

With a single proposer which survives long enough to receive ack and
send out accept messages, the protocol will terminate in a few
message delays.

However, with multiple proposers, it is easy to imagine different
proposers step on each other. The solution is to ensure that there is
eventually some interval during which there is exactly one proposer
who does not fail. The FLP result tells us that this is impossible
unless we use randomization or real time (but safety is always
guaranteed).

Some solutions include exponential random backoff (as used by the
Ethernet for congestion avoidance), the Ω failure detector, etc.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 16 / 26



Paxos in Chubby9

Chubby is a lock service with an API similar to that of a file system.
It allows clients to perform whole-file reads and writes, augmented
with advisory locks and notification of various events such as file
modification.
Expected usage:

coarse-grained synchronization within client systems, in particular,
leader election (electing a primary among a set of otherwise equivalent
servers)
well-known and available storage of a small amount of metadata
work partition between multiple servers

Chubby needs leader election itself (among the 5 servers in a Chubby
cell), and it uses Paxos for master election. The master lease is
essentially a mechanism to designate one single proposer for a period
of time, and thus guaranteeing progress.
Chubby also relies on Paxos to propagate the writes among the
replicas.

9Tushar D Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made live: an engineering perspective”. In:
Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing. ACM. 2007, pp. 398–407.

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 17 / 26



Highlights of Chubby Design Choices

Lock service over Paxos library or consensus service

Low programming complexity (for the clients...)

Easy to maintain existing program structures
Familiar API to developers
A single client can make progress safely using locks

Mechanism to advertise election results, hence serving small files

Coarse-grained over fine-grained

Weaker latency requirements (especially considering fail-overs)

Far less load

Enough for the clients, since they can easily implement their own
fine-grained locks

Advisory locks over mandatory locks

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 18 / 26



Chubby Engineering Techniques

“Building Chubby was an engineering effort; ... [I]t was not research. ...
The purpose of this paper is to describe what we did and why, rather than
to advocate it.” –Mike Burrows

Hiding complexity from client applications

In Chubby’s case, the Chubby servers and its client libraries collaborate to
provide the illusion to the application that no failure has occurred.

Jeopardy/safe/expired events as well as grace periods during master
fail-overs

Sequence numbering to handle delayed or reordered requests

Chubby: sequencer (and lock-delay) in place of sequence numbers in
virtual synchrony; epoch number for masters

Paxos proposal number; also extensively used in network protocols
such as TCP/IP

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 19 / 26



Chubby Engineering Techniques: cont’d

“We have found that the key to scaling Chubby is not server performance;
reducing communication to the server can have far greater impact.”

Scaling by reducing traffic and overhead

Sessions and KeepAlives (with piggybacked events)

Caching (including negative caching, i.e., caching failure results)

Proxies for reads and KeepAlives, resembles a write-through cache

Chubby permitting clients to cache locks–holding locks longer than
strictly necessary

Other scaling techniques

Balance client-server ratio: one Chubby cell per data center, etc.

Partitioning: hierarchical namespace in a filesystem-like API comes in
handy

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 20 / 26



Chubby: Lessons Learned

Unexpected use as a name server

Chubby provides explicit invalidation for caching vs. time-based
caching in DNS (TTL refreshes)

Name resolution requires only timely notification rather than full
consistency: to utilize this property, Chubby had additional
implementations

Abuses

Repeated open/close calls on files; not understanding RPC costs

Some used Chubby as storage for large amounts of data

Some attempted to use Chubby’s event notification mechanism as
publish/subscribe

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 21 / 26



Chubby: Lessons Learned (cont’d)

Use of UDP as transport protocol for RPCs

TCP (in particular, its back off policy) ignores the high-level timeouts such
as the Chubby leases, so TCP based KeepAlives led to many lost sessions
at times of high network congestion.

Distribution of engineering efforts

Fail-over code, executed far less often than other parts of the system,
has been a rich source of interesting bugs.

Chubby rewrote a simpler version of Berkeley DB and used Paxos for
replication because Berkeley DB’s replication code is less frequently
used and thus less well-maintained

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 22 / 26



Chubby: Rants

“Despite attempts at education, our developers regularly write loops that
retry indefinitely when a file is not present, or poll a file by opening it and
closing it repeatedly when one might expect they would open the file just
once.”

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 23 / 26



Chubby: Rants (cont’d)

On over-optimism of Chubby’s availability:

“We find that our developers rarely think about failure probabilities, and
are inclined to treat a service like Chubby as though it were always
available.”

“Developers also fail to appreciate the difference between a service being
up, and that service being available to their applications.”

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 24 / 26



Resources

James Aspnes, Notes on Theory of Distributed Systems.
http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf

Apache Zookeeper. https://zookeeper.apache.org/

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 25 / 26



The End

Presenter: Xiao Shi (Yale) Chubby & Paxos Oct 2015 26 / 26


	Consensus Problem
	Paxos Algorithm
	Chubby

